АНАЛИЗ ИЗМЕРЕНИЙ ПАРАМЕТРОВ ПОЛЯ ТЕПЛОВЫХ НЕЙТРОНОВ В КОРПУСЕ РЕАКТОРА, В ОБЛАСТЯХ ОКОЛО КОРПУСА НА МОДЕЛИ ВВЭР-1000 (ЧЕХИЯ, ИЯИ, LR-0) И В КАНАЛАХ ИОНИЗАЦИОННЫХ КАМЕР ВВЭР-1000 НА АЭС

С. С. Ломакин (НТЦ ЯРБ), Б. Ошмера (ИЯИ, Чехия)

В настоящее время, в связи с разработкой и сооружением более совершенных реакторов ВВЭР, появилась необходимость в экспериментальном уточнении ряда нейтронно-физических параметров нейтронных полей в областях реакторной установки, в которых работают элементы системы СУЗ. Немаловажное значение для дозиметрии корпусов ВВЭР имеет и экспериментальное определение параметров нейтронного поля в корпусе реактора (КР) и в областях около корпуса реактора (в каналах ИК), проходящих вблизи опорных конструкций реакторов. Эти данные позволяют также уточнить степень влияния тепловых нейтронов на радиационное охрупчивание материалов реакторной установки.

В табл. 1 представлены результаты измерений параметров поля тепловых нейтронов на модели ВВЭР-1000 реактора LR-0 с помощью счетчика тепловых нейтронов в корпусе реактора и в областях около корпуса, а также результаты экспериментальных исследований в каналах ИК на AC с ВВЭР, полученные с помощью активационных детекторов.

Приводятся данные абсолютных и относительных измерений плотности потоков тепловых нейтронов nv_0 , кадмиевые отношения R_{cd} , параметры $r_{\sqrt{T/T_0}}$ и температуры спектра тепловых нейтронов T_n .

Параметры поля тепловых нейтронов определялись с помощью набора активационных детекторов, содержащих Lu, Cu, Mn, Co (в каналах ИК реакторов ВВЭР-1000 на НВАЭС и других российских АС) с использованием формализма Весткотта. На модели ВВЭР-1000 реактора LR-0 использовался счетчик тепловых нейтронов, откалиброванный в эталонном нейтронном поле.

В табл. 1 и на рис. 1 и 2 приведены результаты измерений кадмиевых отношений (R_{Cd}) и распределения плотностей потоков нейтронов в каналах модели (позиции 3 - 8), полученные с помощью счетчика тепловых нейтронов при установке макета образцов-свидетелей (ОС) и без макета. В табл. 2 приведены величины $r\sqrt{T_n/T_0}$, T_n и nv_0 , измеренные в каналах ИК ВВЭР-1000 [1] и ВВЭР-440 [2] (для сравнения).

Таблица 1

Позиция измерения на модели ВВЭР		<i>R_{cd}</i> с макетом ОС	<i>R_{cd}</i> без макета ОС	Скорость счета, имп/сек		
				С макетом ОС	Без макета ОС	
3,	перед КР	4,81	6,98	1000,00	845,28	
4,	в КР	1,89	1,83	127,05	83,36	
5,	в КР	1,56	1,32	49,10	38,02	
6,	в КР	1,27	1,27	29,21	23,07	
7,	за КР	2,37	2,21	48,17	27,36	

Результаты измерений на модели ВВЭР-1000

8, канал ИК	8,27	8,12	106,39	60,20
				T C O

Таблица 2

Параметры поля тепловых нейтронов в каналах ИК ВВЭР

AC	Реактор	№ и рас- положение канала	<i>Nv</i> ₀, нейтр⋅см ⁻² ⋅с ⁻¹	T _n ,°K	$r\sqrt{T_n/T_0}$
НВАЭС-5	BBЭP-1000	№ 8(ИК) <i>R</i> * = 310см В бетоне	(1,01±0,05)+9	433±17	0,16±0,01
	BBЭP-1000	№ 13(ИК) <i>R</i> = 310см в бетоне	(1,05±0,10)+9	425±16	0,13±0,01
	BBЭP-440	№ 13 (ИК) в баке с во- дой	(1,80±0,07)+10	418±17	0,082±0,03
	BBЭP-440	№ 18(ИК) в баке с водой	(1,96±0,07)+10	409±13	0,08±0,01
	BBЭP-440	ИК в бетоне	(5,32±0,05)+10	550±14	0,13±0,01

Рис. 1. Кадмиевое отношение (пунктирная кривая – с моделью для ОС,

Рис. 2. Скорость счета детектора без кадмия (пунктирная кривая – с моделью для ОС, сплошная – без модели для ОС)

Анализ представленных экспериментальных данных, полученных на модели реактора ВВЭР-1000 и на действующих АС, позволяет сделать следующие выводы.

- Впервые получены расширенные экспериментальные данные о распределении плотности потока тепловых нейтронов по толщине корпуса реактора, за корпусом реактора и в защите (бетон, каналы ИК).
- Полученные экспериментальные данные наглядно демонстрируют тот факт, что поле тепловых нейтронов в области расположения каналов ИК формируется путем замедления быстрых нейтронов, прошедших корпус реактора.
- 3. Спектр тепловых нейтронов имеет большую жесткость в каналах ИК, расположенных в бетонной защите, чем в водяной защите.
- 4. Приведенные в статье измеренные спектральные параметры поля тепловых нейтронов целесообразно использовать в целях верификации расчетных программ и кодов.

Литература

- 1. Ломакин С. С. и др. Результаты измерений поля нейтронов в каналах ВВЭР-1000. Атомная энергия, т. 56, вып. 3, 1984.
- 2. Ломакин С. С. и др. Экспериментальные данные о нейтронных полях ВВЭР-440. Атомная энергия, т. 54, вып. 3, 1983.